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Explicit predictor}multicorrector time discontinuous Galerkin (TDG) methods
developed for linear structural dynamics are formulated and implemented in a form suitable
for arbitrary non-linear analysis of structural dynamics problems. The formulation is
intended to inherit the accuracy properties of the exact parent implicit TDG methods. To
this end, suitable predictors and correctors are designed to achieve third order accuracy,
large stability limits and controllable numerical dissipation by means of an algorithmic
parameter. As the study of a general non-linear case is rather complex, the analysis of the
convergence properties of the resulting algorithms are restricted to conservative Du$ng
oscillators, for which closed-form solutions are available. It is shown that the main
properties of the underlying parent scheme can be retained. Finally, results of representative
numerical simulations relevant to Du$ng oscillators and to a sti! spring pendulum
discretized with "nite elements illustrate the performance of the numerical schemes and
con"rm the analytical estimates.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The numerical solution of problems in structural dynamics requires the time integration of
a system of ordinary di!erential equations. Finite di!erence-based time-stepping schemes
are widely used tools [1, p. 490]; however, particular attention is required for application to
non-linear problems, as these schemes were mainly developed in the context of linear
problems. For instance, the trapezoidal rule which is unconditionally stable (A-stable) and
non-dissipative in the linear case, does not guarantee a stable time integration in the
non-linear case. This drawback has been reported in several studies and much research has
been devoted to the development of more robust implicit algorithms for non-linear
dynamics (see references [2, p. 447, references therein; 3] among others). With regard to
explicit algorithms, the second order central di!erence (CD) method is still the most
popular explicit scheme [1, p. 495]. Nonetheless, several explicit schemes devoted to linear
and non-linear problems have been proposed recently. For instance, Chung and Lee [4]
developed an explicit scheme with controllable high-frequency dissipation for linear and
non-linear structural dynamics. Macek and Aubert [5] proposed a modi"ed central
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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di!erence scheme with a mass penalty technique able to lower the highest natural frequency
of the dynamical system under examination. Other applications of "nite di!erence schemes
can be found in reference [6], with reference to Burger's non-linear one-dimensional
equation. Both accuracy and stability properties have been checked in the linear case for
this scheme, while the convergence properties have been proved in the non-linear regime by
numerical simulation only.

Questions related to how explicit schemes perform on non-linear systems, particularly
when non-linearity is an issue, are still a matter of investigation. Examples are the papers by
Ho! and Taylor [7, 8], in which a high order explicit method has been analyzed both in the
linear and non-linear regimes. In the case of strong non-linearities, it has been demonstrated
that the scheme may decrease its order of accuracy to two; in addition, it has been proved
that the scheme may exhibit unstable behaviour owing to sudden sti!ening or large
displacement increments.

Another factor which could impair performance of an explicit algorithm applied to
non-linear cases, is non-physical oscillation, related to spurious high-frequency modes
introduced by spatial discretization [1, p. 498]. In fact, the CD scheme does not introduce
any algorithmic damping; thereby inaccurate results owing to the integration of spurious
modes, artefact of modelling, may be obtained. To avoid such unexpected e!ects,
algorithmic dissipation in the high-frequencymodes should be introduced. See, for instance,
the explicit HCE-� method of Hulbert and Chung [9], designed purposely to annihilate
high-frequency oscillation modes.

An alternative approach to numerical time integration of structural systems is based on
Galerkin formulations in the time domain [10}13]. In such schemes, the space is discretized
using conventional "nite elements, the time interval is partitioned in a number of
subintervals, while the response is approximated by means of trial functions in the time
variable. The use of discontinuous displacement and momentum "elds leads to the class of
implicit schemes, named time discontinuous Galerkin (TDG) methods. These
unconditionally stable schemes damp out any undesirable high-frequency mode, without
introducing excessive algorithmic damping in the low-frequency response. Nonetheless, the
factorization of a matrix larger than the one exploited in standard implicit schemes is
required owing to unknown extra displacement and momentum "elds. In order to limit the
computational e!ort, Li and Wiberg [14] implemented a predictor}multicorrector solution
algorithm in the TDG method. Such an algorithm requires the factorization of a reduced
matrix for each "xed time-step size, and few iterations for solving the resulting system of
coupled equations in the unknown velocities. The same authors also proposed TDG
methods based on an explicit time integration [15, 16]. The resulting explicit scheme was
third order accurate and endowed with a stability limit higher than that of the CD method.
Third order accuracy was also proved for a non-linear Du$ng oscillator, while the stability
limit estimated for the linear case was employed in the non-linear case too.

Based on similar strategies, a new class of explicit TDG methods, with a user-de"ned
dissipation, has been developed by Bonelli et al. [17]. The new proposed schemes,
designated E schemes, have been implemented in a predictor}multicorrector form, exhibit
third order accuracy and accrue a stability limit higher than the one of the CD scheme.
However, the convergence and dissipation properties of such algorithms are not so obvious
in the non-linear case. In fact, the limited number of correctors combined to severe
non-linearities may impair their favourable properties. Therefore, the E schemes are
analyzed in this paper to evaluate both their convergence properties and their extension to
the non-linear case.

The analysis of a general non-linear case is rather complex mainly due to the strong link
between the scheme performance and the type of non-linearity. A common approach in
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structural dynamics entails the convergence analysis on relatively simple non-linear test
problems [18, p. 424; 19}23], which can describe cases of interest. This procedure has also
been chosen in this paper and therefore, the accuracy and stability analysis of the E schemes
is restricted to conservative Du$ng oscillators. These single-degree-of-freedom (s.d.o.f.)
systems are representative of a large class of strong non-linear hardening and softening
structural problems [18, p. 424], and are often assumed as test problems for the evaluation
of time-stepping schemes [15, 21, 22, p. 245].

In view of arbitrary non-linear analysis, the time integration of a sti! ordinary
di!erential equation representative of a system discretized in space with "nite elements is
also considered [23, p. 9, 24]. Therefore, several simulations are performed on a sti! spring
pendulum, which exhibits a large and relatively slow circular motion coupled to
a high-frequency axial motion, artefact of the modelling [3]. In order to limit the in#uence
of the high-frequency internal motion on the global physical solution, the E schemes must
dissipate the axial motion and conserve the circular motion in the medium to long term. To
a lesser extent, simulation is also performed with "nite di!erence-based schemes, like the
CD and the HCE-� methods.

The remainder of the paper is organized as follows. In section 2, a formulation of the
TDG method is presented. Section 3.1 is devoted to the formulation of the explicit
E methods in the non-linear regime, while the implementation characteristics of the
E schemes are drawn in section 3.2. Section 4 illustrates the convergence analyses of the
schemes applied to the non-linear Du$ng oscillator model problems. Section 5 presents
numerical simulations which illustrate the performance of the methods as predicted from
theoretical analysis, while concluding remarks are reported in section 6.

2. FORMULATION OF THE IMPLICIT TDG METHOD

The semidiscrete initial value problem with the initial conditions reads

MqK (t)#Cq� (t)#S(q(t))"f (t), t3I"(0, t
�
),

q(0)"q�
�
,

q� (0)"v�
�
. (1)

where the state variables q(t) and q� (t) are the nodal quantities arising from the spatial
discretization. To obtain equation (1

�
) a standard "nite element-based discretization [1] is

used. Note that the subscript of equation (1
�
) points out the "rst equation in system (1). Let

M denote the symmetric positive-de"nite mass matrix, C the viscous damping matrix,
S(q(t)) the vector of non-linear internal forces, f(t) the vector of applied forces and I the time
domain. The superposed dots indicate di!erentiation with respect to time t. q�

�
and v�

�
are

the prescribed initial displacement and velocity vectors. The initial value problem (1) can be
rewritten in the "rst order form

p� (t)#CM��p(t)#S (q(t))"f (t), t3I"(0, t
�
),

M��p(t)!q� (t)"0, t3I"(0, t
�
),

q (0)"q�
�
,

p (0)"p�
�
"Mv�

�
, (2)
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Figure 1. Time "nite elements with linear test and weight functions.
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where q (t) and p(t) denote the generalized displacement and momentum vector. The
standard TDG methods are one-step methods derived from Galerkin weighted residual
formulations of equations (2), with the initial conditions imposed in a weak manner at each
time step. Hereinafter, a two-"eld formulation is considered with displacement and
momentum as independent "elds. Moreover, attention is restricted to the method obtained
using linear time interpolants. In such conditions, third order accuracy and L stability can
be achieved in linear regime, namely, high-frequency modes are damped out nearly in one
time step [12]. Consider a partition of the time domain

I
�
"(t

�
, t

���
), i"0,2 ,N, (3)

where 0"t
�
(t

�
(2(t

�
(t

���
(2(t

�
and �t"t

���
!t

�
is the time-step size. Let

(q
�
, p

�
) denote the vectors of displacement and momentum at t�

�
"limtPt�

�
t, which are

known from either the previous step calculation or the initial data (q�
�
and p�

�
) if i"0.

Moreover, let (q
�
, p

�
) and (q

�
, p

�
) denote the displacement and momentum at t�

�
"limtPt�

�
t

and t�
���

, respectively, which represent the four unknown vectors in the time interval
(t�
�
, t�

���
) . Such quantities are illustrated schematically in Figure 1. Displacement and

momentum at an arbitrary time t3(t
�
, t

���
) are expressed as

q (t)"t
�
(t) q

�
#t

�
(t) q

�
,

p(t)"t
�
(t) p

�
#t

�
(t) p

�
, (4)

where the interpolation polynomials read

t
�
(t)"

(t
���

!t)

�t
�, t

�
(t)"

(t!t
�
)

�t
. (5)
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The corresponding weighting functions are chosen as

wq (t)"t
�
(t)wq

�
#t

�
(t)wq

�
,

wp (t)"t
�
(t)wp

�
#t

�
(t)wp

�
. (6)

With this notation to hand, the TDG1 method is obtained enforcing the weighted residual
form of equations (2): "nd (q

�
, p

�
) and (q

�
, p

�
) such that

�I
�

w�q (p� (t)#CM��p(t)#S(q(t))!f(t)) dt

#�I
�

w�p (t) (M��p(t)!q� (t)) dt

!w�p (t��
) (q(t�

�
)!q

�
)

#w�q (t��
) (p(t�

�
)!p

�
)"0 (7)

for all wq
�
, wq

�
, wp

�
, wp

�
. Note that the initial conditions are weakly enforced in equation (7)

and, as such, the numerical solution can be discontinuous between time steps; hence the
denomination of TDG1 algorithm. Such discontinuity is depicted in Figure 1 and
systematically leads to energy-decaying schemes, i.e., schemes eliminating the energy
associated with vibratory motion at high frequency [14]. Substituting equations (4) and (6)
into equation (7), the following algebraic system is obtained:

Pq�
#�

1

2
I#

�t

3
CM��� p

�
#�

1

2
I#

�t

6
CM��� p�"p

�
#F

�
,

Pq2#�!
1

2
I#

�t
6

CM��� p�#�
1

2
I#

�t
3

CM��� p
�
"F

�
,

!

1

2
q
�
!

1

2
q
�
#

�t

3
M��p

�
#

�t

6
M��p

�
"!q

�
,

1

2
q
�
!

1

2
q
�
#

�t

6
M��p

�
#

�t

3
M��p

�
"0, (8)

where

Pq1"�
t
�
#1

t
�

t
�
(t)S(t

�
(t) q

�
#t

�
(t) q

�
) dt,

Pq2"�
t
�
#1

t
�

t
�
(t)S (t

�
(t) q

�
#t

�
(t) q

�
) dt

F
�
"�

t
�
#1

t
�

t
�
(t) f(t) dt, F

�
"�

t
�
#1

t
�

t
�
(t) f (t) dt. (9)

A drawback of the TDG1 method is related to the size of system (8), which is equal to
4n

������
, where n

������
is the number of degrees of freedom in the spatial discretization. This

system is four times larger than the conventional time discretization of equation (1).
Moreover, the global matrix is non-symmetrical.
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To limit these drawbacks, we propose an explicit formulation derived directly from the
implicit parent TDG1 method and implemented in an explicit predictor}multicorrector
form with one and two corrector passes. The formulation represents an extension to the
non-linear case of the explicit methods suggested in reference [17]. Therefore, an accuracy
and stability analysis of these schemes is needed for the non-linear case. Clearly, the
convergence properties of the parent implicit TDG method in the non-linear case depend
on the integration rules employed in equation (9). Nonetheless, the e!ect of internal and
external force approximations on the convergence of the schemes is not the object of this
paper, and therefore, an exact integration is considered for the Du$ng oscillators. For the
more complicated problem, namely, the sti! spring pendulum, three-point Gauss}Legendre
quadrature is exploited.

3. THE EXPLICIT PREDICTOR}MULTICORRECTOR METHODS

3.1. FORMULATION

For simplicity, the undamped (C"0) case is considered. The algorithms are derived from
the implicit parent TDG1 scheme described in section (2), with the aim to retain both third
order accuracy and favourable dissipative properties. In order to reduce the computational
e!ort related to the solution of system (8) the explicit formulation relies on an iterative
predictor}multicorrector procedure, where the number of correctors is limited to one or
two. To this end, the unknown momenta p

�
and p

�
are eliminated from equations (8

�
, 8

�
),

thus obtaining

xp"�
p
�
p
�
�"�

1

�t
M(3q

�
#q

�
!4q

�
)

1

�t
M(!3q

�
#q

�
#2q

�
)� . (10)

Substituting equation (10) into the equations (8
�
, 8

�
) and multiplying the second equation

by !�
�
, the following system is obtained:

B xq#Pq!P
�
"0, (11)

where

B"

1

�t �
0

M

M

0 � , xq"�
q
�
q
�
�,

P
�
"

p
�
#

1

�t
Mq

�
#F

�
1

�t
Mq

�
!

1

3
F
�

	 Pq"�
P
��

!�
�
P

��
�. (12)

System (11) is solved in terms of the unknown displacement vector x
�
. In fact, a formulation

in the unknown momenta has also been suggested in reference [16]. Nonetheless, as the
non-linear reaction forces depend mainly on displacements, see equation (1), the
displacement vector xq has necessarily to be evaluated to estimate the vector Pq. Moreover,



DISCONTINUOUS GALERKIN METHODS 701
the vector p
�
de"ned in equation (10

�
) is not used and therefore, the computational e!ort is

limited avoiding one vector storage.
Let x
��q denote the kth trial value of the unknown displacement vector in a typical time

step [t
�
, t

���
]. In order to advance from t

�
to t

���
, the following steps are performed.

3.1.1. Predictor

The predictor relies on the Taylor series expansion of the solution of the implicit parent
TDG1 algorithm

q
�
"q

�
!

�t�

6
M��p�

�
#O (�t�),

q
�
"q

�
#�tM��p

�
#

�t�

2
M��p�

�
#O (�t�).

(13)

where p�
�
de"nes the time derivative of momentum evaluated at t�

�
according to Figure 1; it

can be obtained from the equilibrium equation (2), namely,

p�
�
"f (t

�
)!S(q

�
). (14)

In order to achieve optimal accuracy and dissipative properties, xq is expressed in terms of
free parameters a and b

x
��q "�
q
��
�
q
��
�
�"�

q
�
#a�t�M��p�

�
q
�
#�tM��p

�
#b�t�M��p�

�
�, (15)

where k"0 is used to initialize the unknowns.

3.1.2 Corrector

In order to obtain approximate solutions of system (11), an iterative scheme based on
displacement increments is exploited. More speci"cally, it su$ces to de"ne the residual

r
��"B x
��q #P
��q !P
�

(16)

and the displacement increment

�x
��q "!B��r
��. (17)

The new class of schemes exploiting predictor (15) with a limited number k
	
�

of correctors
is the extension to the non-linear case of the schemes proposed in reference [17] for the
linear case. The schemes are denoted E methods and, more speci"cally, E-1C de"nes the
scheme requiring one corrector pass (k

	
�
"1) while the acronym E-2C stands for the

method adopting two corrector passes (k
	
�

"2).

3.2. IMPLEMENTATION

The solution procedure of the E methods applied to non-linear problems is as follows:

1. Initial computations:
(a) Form the diagonal mass matrix M.
(b) Initialize q�

�
, p�

�
, S(q�

�
) and f(t

�
).

(c) Select the number of correctors k
	
�

(1 or 2), the value of the parameters a and b as
well as the time-step size �t
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2. For each time step (i"0, 1,2 ,N),

(a) Compute the momenta time derivative at time t�
�

p�
�
"f(t

�
)!S(q

�
).

(b) Compute the vectors P
�	�

and P
�	�

based on initial conditions and external force
(equations 12

�
, 12

�
))

P
�	�

"p
�
#

1

�t
Mq

�
#�

t
�
#1

t
�

t
�
(t) f(t

�
#t) dt,

P
�	�

"

1

�t
Mq

�
!

1

3 �
t
�
#1

t
�

t
�
(t) f(t

�
#t) dt.

(c) Compute the predictor displacements (equation (15)) at time t�
�

and t�
���

,
respectively,

q
��
�

"q
�
#a �t� M��p�

�
,

q
��
�

"q
�
#�tM��p

�
#b�t�M��p�

�
.

(d) Set k"0.

(e) Multicorrector:

(i) Compute the integrals of internal force vector S (q)

P
��q1"�
t
�
#1

t
�

t
�
(t)S(t

�
(t)q
��

�
#t

�
(t)q
��

�
) dt,

P
��
��

"�
t
�
#1

t
�

t
�
(t) S(t

�
(t)q
��

�
#t

�
(t)q
��

�
) dt.

(ii) Compute the residual vectors (equation (16))

r
��
�

"

1

�t
Mq
��

�
#P
��q1 !P

�	�
,

r
��
�

"

1

�t
Mq
��

�
!

1

3
P
��q2!P

�	�
.

(iii) Compute the displacement increments (equation (17))

�q
�
"�tM��r

�
,

�q
�
"�t M��r

�
.

(iv) Compute the displacement vectors

q
����
�

"q
��
�

#�q
�
,

q
����
�

"q
��
�

#�q
�
.

(v) k"k#1

(vi) If k(k
	
�

go to 2(e)(i).
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(f) Compute the displacement vector at time t
���

"t
�
#�t

q
���

"q
��
�
.

(g) Compute the momentum vector at time t
���

"t
�
#�t (equation (10))

p
���

"

1

�t
M(!3q
��

�
#q
��

�
#2q

�
).

(h) i"i#1.

(i) If i(N go to 2(a).

The parameters a and b are selected to achieve third order accuracy and controllable
dissipative properties. Such issues are treated thoroughly in section 4. Moreover, di!erently
from the explicit formulation suggested in reference [15], the proposed schemes avoid the
evaluation of p

�
in each iteration and compute p

���
only at the iteration end.

4. ACCURACY AND STABILITY ANALYSIS

In this section, it is demonstrated that the predictor}multicorrector algorithms described
in section 3 can substantially retain the properties of the E methods developed for linear
systems [17]. It is well known that a scheme designed for linear dynamics can be analyzed
by considering a simple model problem which describes the time evolution of a generic
vibration mode [1, p. 492]. Nonetheless, the standard modal decomposition procedure
cannot be applied to equations (2). Therefore, non-linear test problems exhibiting key
features typical of more complex systems arising in non-linear dynamics are chosen: namely,
unforced and undamped Du$ng oscillators [25, 22, p. 245]. Such oscillators are described
by means of equation (42) and are discussed at length in section 5.1.

4.1. ITERATION MATRIX

In a s.d.o.f. problem the matrices in equation (1) become scalar and the vector xq in
equation (12)

�
collects only two components. De"ning a secant sti!ness operator D which

satis"es the equation

P
��q "D(x
��q )x
��q (18)

and combining equations (16) and (17), a relation between two iterations can be found.
More speci"cally, such relation reads

x
����q "x
��q #�x
����q "x
��q !B��r
��(x
��q )"x
��q !B��(Bx
��q #P
��q !P
�
)

"[I!B��(B#D(x
��q ))]x
��q #B��P
�
"!B��D(x
��q )x
��q #B��P

�
(19)

and can be expressed in the form

x
����q "A
�
(x
��q ) x
��q #g , (20)
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where the iteration matrix A
�

(x
��q )"!B��D(x
��q ) while g"B��P
�
takes into account

both initial conditions and external forces. Assuming for simplicity M"1 in equation (42),
A

�
and g read

A
�

(x
��q )"

�t�S
�
(10#3 S

�
(q
��

�
)�#9S

�
(q
��

�
)�)

180

�t� S
�
(10#3S

�
(q
��

�
)�#6 S

�
(q
��

�
)�)

90

!

�t�S
�
(10#6S

�
(q
��

�
)�#3S

�
(q
��

�
)�)

30
!

�t�S
�
(10#9 S

�
(q
��

�
)�#3S

�
(q
��

�
)�)

60

(21)

and

g"�
q
�

�t p
�
#q

�
� (22)

respectively.

4.2. TIME-ADVANCE SCHEME

Both the consistency and stability analysis are based on the following time-advance
scheme:

y
�
"A(y

�
, S

�
, S

�
, �t), (23)

where, recalling the notation employed in Figure 1,

y
�
"�

q
�
p
�
� and y

�
"�

q
�
p
�
�. (24)

The analytic expression of equation (23) can be readily obtained as the schemes are
explicit. Equation (23) depends on equations (15) and (20), as such, x
��q A

�
and g can be

exploited. More speci"cally, assuming again M"1 the predictor reads

x
��q "�
q
��
�
q
��
�
�"Ey

�
, (25)

where the matrix E

E"�
1!�t�aS

�
(1#S

�
q�
�
� 0

1!�t�bS
�
(1#S

�
q�
�
� �t� (26)

relies on free parameters a and b and provides an initial guess for equation (20). The vector
g reads

g"Gy
�
, (27)

where

G"�
1

0

1

�t�, (28)
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and depends on the initial conditions only. As a result, the unknown displacement vector
xq can be estimated performing k

	
�
(1 or 2) correctors. Employing the iteration matrix A

�
,

it can be readily shown that

xq"x(k
	
�

)
q "�

k
	
�

�
���

A
�

(x
����q )�x
��q #

k
	
�

!1

�
���

�
�

�
���

A
�

(x
����q )�g

"�
k
	
�

�
���

A
�

(x
����q )�Ey�#
k
	
�

!1

�
���

�
�

�
���

A
�

(x
����q )�Gy
�
"Qy

�
, (29)

where

Q"��
k
	
�

�
���

A
�

(x
����q )�E#

k
	
�

!1

�
���

�
�

�
���

A
�

(x
����q )�G�. (30)

Once xq is determined, the momentum p
�
at the end of the time step can be evaluated from

equation (10
�
):

p
�
"!

3

�t
q
�
#

1

�t
q
�
#

2

�t
q
�

"W
�
y
�
#W

�
x
�
"(W

�
#W

�
Q)y

�
, (31)

where

W
�
"�

2

�t
0� and W

�
"�!

3

�t

1

�t�. (32)

Finally, the time-advance scheme reads

y
�
"A(y

�
, S

�
, S

�
, �t)"��

0 1

0 0�Q#�
0

1�(W�
#W

�
Q)�y�. (33)

4.3. CONSISTENCY

The local truncation error � for an unforced (f"0) system reads

�"A(y
�
, S

�
, S

�
, �t)!y

��
(y

�
, S

�
, S

�
, �t), (34)

where y
�
de"nes the exact solution at time t

�
. If �"O(�t���) the algorithm is said to be of

kth order [26, p. 132]. Expanding � in Taylor series about �t"0 up to the leading terms
yields

�"�
c
�
(y

�
, S

�
, S

�
)�tk�

c
�
(y

�
, S

�
, S

�
)�tk��, (35)

where the order of the algorithm is de"ned as k"min�k
�
!1, k

�
!1�. The coe$cients

c
�
and c

�
are constant independent of �t and are useful to point out the dependence of the

local truncation error on the sti!ness parameters for su$ciently small time steps.
In the linear case, Bonelli et al. [17] proved that the E-1C scheme endowed with k

	
�
"1,

achieves the same accuracy order (third order) as the implicit parent TDG1 algorithmwhen

a"�
�
!b. (36)
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In the non-linear case, c
�
, k

�
c
�
and k

�
can be obtained using predictor (15) and one corrector

(33). They are collected in Table 1; and it is clear that relation (36) entails third order
accuracy also in the non-linear case. The use of equation (36) provides the � values collected
in Table 2. By perusing the results, it is evident that the E-2C scheme achieves the same
accuracy as the implicit parent TDG1 algorithm, while the accuracy of the E-1C scheme
depends on the free parameter b. Moreover, the E-2C scheme achieves third order accuracy
without equation (36), and therefore, two free parameters a and b could be exploited.
Nonetheless, we prefer to use relation (36) for the E-2C scheme also, as this relation is
needed to achieve third order accuracy when an explicit damping treatment is considered
[17]. Therefore, only one free parameter b is used to control the dissipative properties of the
algorithms.

4.4. STABILITY

In the linear case, namely, S
�
"0 in equation (42),

A"Ay
�

(37)

in equation (23), where A is the so-called ampli"cation matrix. This matrix is expressed at
length in reference [17], and depends on the free parameter b and the non-dimensional
frequency

�"�
S
�

M
�t (38)

respectively. The stability properties of the E-1C and of the E-2C schemes are controlled by
the eigenvalues �

�	�
of A which assume the form

�
�	�

"e(�, b)$�h(�, b). (39)

The condition

h(�, b)"0 (40)

corresponds to the bifurcation limit �
�
, where �

�	�
become real and distinct for �'�

�
. Let

�
�
denote the spectral radius of A at the bifurcation limit �

�
and �

��
the stability limit for

which �"1; Figures 2 and 3 plot the relations provided by condition (40) for the schemes
E-1C and E-2C respectively. More speci"cally, these plots provide the value of b, which,
employed in equations (15) and (36), permits a user-designed dissipation value �

�
at the

bifurcation limit to be achieved. For clarity, the above-mentioned "gures also report the
values of b, �

�
and �

��
corresponding to �

�
"0)4: b"0)204, �

�
"2)022 and �

��
"2)110

for the E-1C scheme; and b"0)404, �
�
"2)118 and �

��
"2)318 for the E-2C scheme.

The expressions of b and �
�
versus the design parameter �

�
are expressed at length in

reference [17].
In the non-linear case, the conservation or decay of the total energy (Hamiltonian) within

a time step �t is a su$cient condition for stability [27]. This energy criterion is expressed as

H
���
H

�

)1, (41)

where H
�
"H (p

�
, q

�
) de"nes the Hamiltonian function of the system at time t

�
. Hence, the

energy ratio H
���

/H
�
is examined to provide a measure of the (energy) stability of the
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Accuracy properties of the explicit E-1C scheme
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TABLE 2

Accuracy properties both of the E schemes and of the implicit parent ¹DG1 scheme
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�
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Figure 2. Relations among the spectral radius at the bifurcation limit �
�
, the parameter b and the bifurcation

limit �
�
for the E-1C scheme (The scheme is unstable for b(�
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; } } )) } }, spectral radius for
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�
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for the E-2C scheme; ***, b; } } } } }, �

�
; } } )) } }, spectral radius for �

�
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Figure 4. Hardening Du$ng oscillator: evolution of the Hamiltonian ratio H/H
�
versus �t; ***, E-1C

�
�
"0)4; * ) * ), E-2C �

�
"0)4; *} *} *, CD; * * *, HCE-��
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Figure 5. Softening Du$ng oscillator: evolution of the Hamiltonian ratio H/H
�
versus �t; ***, E-1C
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�
"0)4; * ) * ), E-2C �

�
"0)4; *} *} *, CD; * * *, HCE- ��

�
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algorithms for non-linear problems. As no work is done by external and damping forces,
a standard argument shows that H(p, q) is a "rst integral of the problem, i.e.,
H(p(t), q (t))"H (p

�
, q

�
). A discrete energy-decay inequality has been proved for the implicit

parent TDG1 algorithm applied to linear systems [11]. In the non-linear case, the energy
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behaviour of the TDG method has been analyzed mainly through numerical experiments
[19, 20].

With the unforced and undamped conservative Du$ng oscillators at hand, both H
and H

�
can be expressed through equation (48) which can be evaluated analytically by

means of symbolic computation. Therefore, an energy stability analysis of the proposed
E schemes can be performed. Assume M"1, S

�
"100, p

�
"0, q

�
"1)5, S

�
"10 and

q
�
"1)7, S

�
"!�

�
to simulate strong hardening and softening systems respectively [25].

Moreover, choose the dissipation characteristics corresponding to the spectral radius
�
�
"0)4 (see Figures 2 and 3 respectively). The relevant Hamiltonian ratioH/H

�
versus�t is

depicted in Figures 4 and 5 for the hardening and softening systems respectively. For
completeness, the E-1C and E-2C schemes are compared to the HCE-� method [9] with the
same �

�
value and to the CD scheme respectively. One can observe that the proposed

E schemes achieve the energy conservation (H/H
�
P1 ) for �tP0; moreover, they exhibit

favourable stability and energy decay properties for large �t values.
The energy behaviour of the E schemes has also been evaluated analytically for small �t

values, computing the leading term in the Taylor series expansion of H/H
�
!1 at �t"0.

Both c
�

and k
�

are collected in Table 3 as a function of �t. One can infer that the E-2C
scheme achieves the same result as the implicit parent TDG1 method. Moreover, the
relevant value of c

�
is negative for hardening systems, thus con"rming its energy-decay

properties in the non-linear case too. Conversely, c
�

can reverse its sign for softening
systems according to the values of the system parameters as well as of the initial conditions.

5. REPRESENTATIVE NUMERICAL SIMULATIONS

In this section, two representative numerical examples are introduced both to evaluate
the performance of the E schemes and to warrant the analytical estimates in the non-linear
case. To this end, initially s.d.o.f. Du$ng oscillators are considered. They can model, for
instance, the motion of a lumped mass attached to a taut string (hardening system) or
reproduce the motion of a rigid pendulum (softening system). Moreover, such model
problems have been exploited both to highlight the e!ect of high non-linearities on
the stability properties of the trapezoidal rule [25] and to perform convergence studies
[22, p. 306]. The second model problem deals with a two-degree-of-freedom system,
namely, a sti! spring pendulum [3, 24]; it is characterized by the presence of a large and
relatively slow circular motion and of a high-frequency axial motion, artefact of the "nite
element modelling. Since the two motions are coupled, the high-frequency dissipation of the
spurious response is a desired feature. This example has also been selected to illustrate the
loss of stability of some standard schemes in non-linear elastodynamics [3].

5.1. DUFFING OSCILLATORS

The unforced spring}mass Du$ng oscillators are governed by the di!erential equation

MqK (t)#S
�
q(t)(1#S

�
q�(t))"0, (42)

where M is the mass, S
�
and S

�
are sti!ness constants and q(t) is the displacement from the

equilibrium (zero internal force) position. In what follows, it is assumed that M"1, S
�
'0

and that the initial conditions are q(0)"q
�
and qR (0)"p

�
. The di!erential equation (42) has

been widely considered in dynamics, to reproduce both the motion of a hardening system
(S

�
'0, [8, 19]) and the motion of a softening system (S

�
(0, [25]).
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¸eading term of the Hamiltonian energy error both of the E schemes and of the implicit parent ¹DG1 scheme
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�
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In view of both analysis and simulations, it is useful to provide the solution of equation
(42). Since the non-linear term in the internal force is cubic in q, the solution can be easily
expressed in terms of Jacobi elliptic functions [28, p. 92]. Let K(m) denote the complete
elliptic integral of the "rst kind [29, p. 569] and consider p

�
"0. In this case, the solution of

hardening systems reads

q (t)"q
�
cn(!	( t, m), (43)

p(t)"q
�
	L sn(!	( t, m) dn(!	L t, m), (44)

where 	L �"S
�
(1#S

�
q�
�
) and m"S

�
q�
�
/(2#2S

�
q�
�
). The solution is periodic with period

¹"

4K(m)

	L
. (45)

The solution of softening systems is periodic if the initial displacement satis"es the

inequality 
q
�

(1/�!S

�
[30, p. 108]. In this case, the solution can be written as

q (t)"q
�
sn(	( t#K(m), m), (46)

p(t)"q
�
	( cn(	( t#K(m), m) dn(	( t#K(m), m), (47)

where 	( �"S
�
(2#S

�
q�
�
)/2, m"!S

�
q�
�
/(2#S

�
q�
�
) and the period is still given by equation

(45). For general initial conditions, the expressions become more complex. However,
a Taylor series expansions of the solution about a given time t"t

�
can be obtained by
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means of well-established methods [26, p. 41]. As the exact solutions are available, both the
global displacement error 
q (t

�
)!q

�

 and the global momentum error 
p(t

�
)!p

�

 can be

evaluated. Moreover, equation (42) describes an autonomous system, thus the Hamiltonian
can be evaluated in the following form:

H (p(t), q (t))"�
�
p�(t)#< (q(t))"�

�
p�(t)#�

�
S
�
q�(t)#�

�
S
�
S
�
q�(t)"H (p

�
, q

�
), (48)

where <(q(t)) de"nes the potential energy of the system.
Assume S

�
"100; S

�
"10; q

�
"1.5 and p

�
"0)0 for the hardening oscillator, which

entails a period ¹"0)1515; moreover, assume S
�
"100; S

�
"!�

�
; q

�
"1)7 and p

�
"0)0

for the softening oscillator. Since 
q
�

(1/�!S

�
, the solution is periodic with period

¹"1)5235. The aforementioned parameters and initial conditions imply strong non-linear
e!ects on the response [25].

With regard to the hardening oscillator, Figures 6 and 7 depict the global displacement
error and the global momentum error, respectively, for the E schemes and the HCE-�
scheme [9] with �

�
"0)4, as well as for the CD method. The predictor}corrector E schemes

exhibit third order accuracy, thus con"rming the analytical estimates derived in section 4.3
and collected in Table 2; moreover, the errors relevant to the E schemes are smaller than
those of traditional algorithms, thus con"rming the favourable properties of the proposed
methods. Figure 8 depicts the global displacement error relevant to both the E-2C and the
HCE-� scheme for two values of the spectral radius at bifurcation: �

�
"0)4 and 0)6,

respectively. In the limit, the E-2C scheme accrues an error independent of the spectral
radius �

�
. Conversely, the HCE-� scheme exhibits an error which depends on �

�
.

As far as the stability is concerned, the evolution of the Hamiltonian ratio H/H
�

is
depicted in Figure 9, for the di!erent algorithms at hand. Both the E-1C and the E-2C
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Figure 7. Hardening Du$ng oscillator: convergence of momentum at t" 0.02;***, E-1C �
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Figure 8. Hardening Du$ng oscillator: convergence of displacement at t"0)02;* )) *, E-2C �
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Figure 9. Hardening Du$ng oscillator: evolution of the Hamiltonian ratio H/H
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scheme annihilate H/H
�
, thus con"rming the favourable energy-decaying properties of the

E methods. The HCE-� method achieves better results in terms of global energy decay;
however, the non-conservation of energy, a property already exhibited in the linear regime,
as well as the approximate integration of the internal force in equation (42), entail
oscillations which impair its overall performance. Conversely, the CD scheme exhibits its
typical energy non-dissipative property; nonetheless, the energy is not exactly conserved
either in the linear case.

The in#uence of the corrector number k
	
�

both on the accuracy and on the energy
stability of the E schemes can be inferred from Figures 10 and 11 respectively. The plots
show clearly that the schemes with two (E-2C) and three (E-3C) corrector passes exhibit
similar performance, pointing out that the choice k

	
�
"2 is adequate.

With regard to the softening oscillator, Figures 12 and 13 show the displacement error
and the momentum error respectively. Again, the E schemes and the HCE-� method with
�
�
"0)4, as well as the CD scheme are considered. The relevant results con"rm both the

third order accuracy and the limited error achieved by the E schemes. The evolution of the
Hamiltonian ratioH/H

�
is illustrated in Figure 14. Again, the favourable energy-dissipation

properties of the E schemes and the oscillations of the HCE-� scheme are evident.
Conversely, the CD scheme shows very limited dissipative properties.

5.2. STIFF SPRING PENDULUM

The sti! spring pendulum problem was analyzed on many occasions, see references
[3, 24], among others; as a matter of fact, the axial response of the spring entails
high-frequency components, artefact of modelling, which in#uence the rotational motion.
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Figure 11. Hardening Du$ng oscillator: evolution of the Hamiltonian ratio H/H
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Figure 12. Softening Du$ng oscillator: convergence of coordinate at time t"0)3; ***, E-1C �
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Figure 13. Softening Du$ng oscillator: convergence of momentum at time t"0)3; ***, E-1C �
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Figure 15. Sti! spring pendulum.
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The sti! pendulum represents a variant of the rigid pendulum analyzed by several authors
in the past (see reference [2, p. 452], and references therein). Hereinafter, the approach
suggested in reference [3] is followed. Therefore, the sti! spring pendulum is discretized
with a truss element formulated in the total Lagrangian description with the assumption
of a Saint Venant Kirchho! material model. In "xed Cartesian co-ordinates X and >, see
Figure 15, the sti! spring pendulum with no gravity can be expressed as

pR
�
#

EA
�

l
�

�
�
q
�
"0,

pR
�
#

EA
�

l
�

�
�
q
�
"0,

(49)

where A
�

and l
�

are the cross-section and the length in the reference con"guration,
respectively, E is Young's modulus and �

�
is Green strain de"ned as

�
�
"

�q�
�
#q�

�
!l

�
l
�

#

1

2 �
�q�

�
#q�

�
!l

�
l
�

�
�
. (50)

The pendulum conserves the total mechanical energy, or Hamiltonian, which has the form

H (p, q)"
1

2M
(p�

�
#p�

�
)#

1

2
EA

�
l
�
��
�
, (51)

where M"�
�
�
�
A

�
l
�
and �

�
is the density in the reference con"guration. It is endowed with

l
�
"3)0443 m, �

�
A

�
"6)57 kg/m, EA

�
"1)4137�10 N and it is powered by an initial

tangential velocity uR
�
"7)72 m/s. Hence q

�
"(l

�
m, 0 m)� and p

�
"(0 kg (m/s),

10�7)72 kg (m/s)�. As no initial radial acceleration is applied, the truss is loaded by
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the centrifugal force which stimulates the high-frequency axial vibration. Moreover, the
axial and rotational motion are coupled by the Coriolis force. The uncoupled axial
vibration period is ¹


�
"0)029 s while the rotation period amounts to ¹

���
:2)48 s
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assuming rigid-body motion. As a result, this system results axially two orders of
magnitude sti!er than the one considered in reference [3]; therefore, the E schemes must
damp out the undesirable high-frequency axial response without introducing excessive
algorithmic damping in the low-frequency rotational response. The exact solution is not
available and therefore, the reference solution is derived from the CD method employing
a very small time step. Moreover, the exact integration of equations (9

�
) and (9

�
) is not

available, and thus the E scheme exploits a three-point Gauss}Legendre quadrature.
Besides the primary unknown vector q"(q

�
, q

�
)�, the circular co-ordinates � and

�l"�q�
�
#q�

�
!l

�
have also been traced.

Figures 16}18 show the co-ordinate q
�
, the momentum p

�
, and the rotation angle � errors,

respectively, at time t"0)02 s. Results are relevant to the E and the HCE-� schemes with
�
�
"0)4 as well as to the CD method. Again, the results con"rm the good accuracy

properties of the E schemes as well as the analytical estimates presented in section 0)3. Note
that the low error of the E-1C scheme depends on the initial conditions. The subsequent
simulations assume a time step �t"0)009s close to the stability limit of the CD method.
Such conditions are chosen in order to integrate properly the rotational motion and
annihilate the axial motion. However, they render the HCE-� method unstable. The time
evolution of the Hamiltonian ratio H/H

�
is reported in Figure 19, and it can be observed

that few steps are su$cient to the E schemes, to annihilate spurious oscillations caused by
axial motion. Conversely, the CD method exhibits spurious energy oscillation due to high
axial frequencies. The e!ects of such spurious frequencies on the performance of the CD
method are evident in Figure 20, where the evolution of the axial displacement �l is
reported. The limited dissipation properties of the CD method and the favourable
properties of the E schemes are evident. The time history of the rotation angle error relevant
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to the previous simulation is highlighted in Figure 21. The good accuracy properties of the
E-2C scheme with respect to those of the CD method are evident.

Finally, the Hamiltonian ratio H/H
�
is plotted in Figure 22 as a function of �t at the

second time step. This step was chosen because it can be proved that the initial conditions
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considered, allow the E-1C and the E-2C schemes to be "fth and seventh order accurate,
respectively, at the "rst time step. As a result, the plots of Figure 22 are relevant to the
second time step, which implies third order accuracy for both schemes. Again the favourable
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performance of the E methods, especially that of the E-2C scheme, is evident. In fact, the
E-2C scheme exhibits a higher stability limit than those of the other schemes as well as
favourable dissipation properties.

6. CONCLUDING REMARKS

In this work, we have studied predictor}multicorrector time discontinuous Galerkin
(TDG) methods applied to non-linear problems. More speci"cally, the explicit
time-stepping schemes developed in reference [17] and resulting in one- and two-pass
corrector procedures have been analyzed through conservative Du$ng oscillators, for
which closed-form solutions are available, showing that both third order accuracy and
energy-decaying properties can be retained also in the context of relatively simple
non-linear test problems. The proposed schemes have performed satisfactorily in numerical
simulations of conservative Du$ng oscillators and the results appear to be in a good
agreement with analytical estimates. Moreover, the predictor}multicorrector schemes have
been applied to a sti! spring pendulum showing that such time-stepping methods are
particularly attractive for time integration of "nite element semidiscrete problems, where
advantage can be taken of the high-frequency dissipation properties. In fact, simulations
have indicated that the in#uence of the high-frequency internal axial motion on the global
circular motion can be limited. Both analysis and numerical simulation highlight the
favourable accuracy and dissipative properties of the explicit TDG schemes when
compared to those of standard "nite di!erence-based methods, and render the proposed
predictor}multicorrector schemes competitive for medium-term high-quality analyses.
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